Efficient selective filtering of seismic data using multiscale decomposition
نویسنده
چکیده
Seismic signal processing is an important task in geophysics sounding and represents a permanent challenge in petroleum exploration. Although seismograms could in principle give us a picture of a geological structure, they are very contaminated by spurious signals and the ground roll noise is a strongly undesired signal present in the seismograms – it does not carry physical information about the deep geological structures. This fact demands a big effort in developing new filtering methodologies. Using discrete wavelet transform, an efficient filtering for suppression of the ground roll is presented. In this method, seismic data is decomposed in multiple scales. We can remove the noise as a surgical operation in each scale, just from the regions where they are present or strong, allowing us to preserve the maximum of relevant information.
منابع مشابه
Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملMultiscale adjoint waveform-difference tomography using wavelets
Full-waveform seismic inversions based on minimizing the distance between observed and predicted seismograms are, in principle, able to yield better-resolved earth models than those minimizing misfits derived from traveltimes alone. Adjoint-based methods provide an efficient way of calculating the gradient of the misfit function via a sequence of forward-modeling steps, which, using spectral-el...
متن کاملA Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملUsing a novel method for random noise reduction of seismic records
Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...
متن کامل